
Computational Science 
and 

Engineering

Malik Ghallab

April 2013

LIG, Grenoble 



Centuries of craftsmanship development 
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Centuries of craftsmanship development 
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Centuries of craftsmanship development
Past methods

‣Data: notebooks, few Kb

‣Computation: by hand, few flops

‣Theory: driven by data and computation

‣Team: 1 bright scientist, few students
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In Gravitational Physics:
- Centuries of small science, small data culture 
- Few decades of radical change

[E. Seidel, NSF]



Few decades of radical change
Unprecedented growth in

‣Computation

‣Data handling 

‣Communication

‣Sensing

5Large Synoptic Survey Telescope: 40 TBytes/night 

⤴ 109  – 1012



Few decades of radical change
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Allow science and engineering to address complex challenges

‣Involving

• Numerous coupled phenomena

• Widely dissimilar entities and interactions

‣Requiring very fine views of microscopes and telescopes as well as 
global integrative views of “macroscopes”

‣Supporting difficult decisions

We seek solutions. 
We don’t seek – dare I say this ? – just scientific papers anymore.

[S. Chu, DoE]



Outline

✓Motivations

‣Ingredients of Computational Science & Engineering
1. Modeling, simulation and computing
2. Instrumentation, sensing and imaging
3. Massive data processing

‣Impacts of Computational Science & Engineering

‣Conclusion
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Ingredients of Computational Science & Engineering 

New engines of science and technology

1. Computational modeling, simulation and computing

2. Instrumentation, sensing and imaging

3. Massive data processing, mining, analyzing, learning and 
visualizing

Converging conceptual and practical set of tools

8



1. Modeling, Simulation, Computing
Methodology

‣Building computational models of a system or a phenomenon

‣Analyzing properties of models

‣Contrasting models to reality: identification, estimation, learning

‣Designing algorithms and computational schema, parallelization, 
distribution

‣Simulation scenarios 

‣Control, optimization

9

What’s new ?



1. Modeling, Simulation, Computation
What’s new ?
a) Scaling-up : from 103 flops to 1015 flops
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[Top 500 Project]

PERFORMANCE DEVELOPMENT PROJECTED
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1. Modeling, Simulation, Computation
What’s new ?
a) Scaling-up : from 103 flops to 1015 flops

b) Integration of multiple heterogeneous models
• Complex problems involve the interaction of several phenomena
• Each phenomenon has to be addressed not in isolation but coupled 

with all relevant interacting effects
➡ Integration of heterogeneous mathematical formalisms:

differential, geometric, deterministic, stochastic, combinatorial
into algorithms and software components
➡  Composition of elementary components to buildup increasingly 

more complex and encompassing models

11



12[D.Sticker, DFKI]

Metaphor



13[D.Sticker, DFKI]

Metaphor



Environment modeling

14[D.Sticker, DFKI]



1. Modeling, Simulation, Computation
What’s new ?
a) Scaling-up : from 103 flops to 1015 flops

b) Integration of multiple heterogeneous models

c) Universal scope

15

The Galileo vision applied to an exception: only the inanimate world 
could be written in mathematics. This exception does not hold anymore. 
But the Galileo model has changed. 
Nature is written in algorithmic language. 

[M.Serres, Hominescence, 2001]

The book of the universe is written in mathematics. 
[Galileo, Il Saggiatore, 1623]



Outline

✓Motivations

‣Ingredients of Computational Science & Engineering
1. Modeling, simulation and computing
2. Instrumentation, sensing and imaging
3. Massive data processing

‣Impacts of Computational Science & Engineering

‣Conclusion

16



2. Instrumentation, Sensing, Imaging 
Methodology

‣Sense, acquire, measure
 ground facts and evidence to support science

‣Over broad spectrum of scales

‣Over broad spectrum of phenomena and units

17

What’s new ?



2. Instrumentation, Sensing, Imaging 
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What’s new ?
• Scale-up 
• Integration 
• Scope

+
a)   Low-cost massive production

b)   Signal processing and intelligent sensor fusion techniques

c)   Distributed, mobile and widely flexible sensors

d)   Communicating sensors



2. Instrumentation, Sensing, Imaging 
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Smart dust

[K. Pister, Berkeley]



2. Instrumentation, Sensing, Imaging 
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Floating sensor network

[A. Bayen, Berkeley]
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2. Instrumentation, Sensing, Imaging 

Cell scope

[D. Fletcher, Berkeley]
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Instrumentation, Sensing, Imaging 

DNA sequencing

[NHGRI]



Instrumentation, Sensing, Imaging 
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Outline

✓Motivations

‣Ingredients of Computational Science & Engineering
1. Modeling, simulation and computing
2. Instrumentation, sensing and imaging
3. Massive data processing

‣Impacts of Computational Science & Engineering

‣Conclusion

24



3. Massive Data Processing
Methodology

‣Collect, organize, curate

‣Compare, associate, cluster into categories

‣Visualize

‣Correlate, associate into relations

‣Interpret, generalize into knowledge

25

What’s new ?



3. Massive Data Processing
What’s new ?
a) Scaling-up : from 103 Bytes to 1018 Bytes

26
[Lesks, Berkeley SIMS, Landauer EMC]



3. Massive Data Processing
What’s new ?

a) Scaling-up : from 103 flops to 1015 flops

b) Integration of data

• From sensors 

• From simulations

• From broad ranges of phenomena

• Over wide space and extended time

27
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Below the Waves: Heating Up

[Scientific American, April 2013]

Ocean Temperature Rise



3. Massive Data Processing
What’s new ?

a) Scaling-up : from 103 flops to 1015 flops

b) Integration of data

• From sensors 

• From simulations

• From broad ranges of phenomena

• Over wide space and extended time

• Over masses of “prosumers”

29



“Prosumers”
DARPA Red Balloon Challenge : 40 K$ 

Find GPS positions of 10 meteorologic balloons deployed randomly 
over continental US on Dec. 12, 2009, from 10:00 to 16:00

1st: MIT at 18:52

30



3. Massive Data Processing
What’s new ?
a) Scaling-up 

b) Integration

c) Automated processing and interpretation capabilities

• Automated search, mining

• Visualization

31



Data Visualization

32

[LRI-INRIA]



3. Massive Data Processing
What’s new ?
a) Scaling-up 

b) Integration

c) Automated processing and interpretation capabilities

• Automated search, mining

• Visualization

• Machine learning techniques

33
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Fig. 2. Illustration of the 3 image type categories for 4 species

2.2 Pl@ntLeaves metadata

Each image of Pl@ntLeaves dataset is associated with the following meta-data:

– Date upload date of the image
– Type (acquisition type: scan, scan-like or photograph)
– Content content type: single leaf, single dead leaf or foliage (several leaves

on tree visible in the picture)
– Taxon full taxon name (sub-regnum, regnum, class, division, order, family,

genus, species)
– VernacularNames French or English vernacular names
– Author name of the author of the picture
– Organization name of the organization of the author
– Locality locality name (a district or a country division or a region)
– GPSLocality GPS coordinates of the observation

Supervised learning

34[Pl@ntNet]
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Fig. 4. Color variation of Cotinus coggygria Scop. (Eurasian smoketree)

Fig. 5. Global shape variation of Corylus avellana L. (European Hazel)

ally very di↵erent than pure scans. Both share the property of a limited noisy
background but scan-like photos are much more complex due to the lighting
conditions variability (flash, sunny weather, etc.) and the unflatness of leaves.
Finally, the variability of unconstraint photographs acquired on the tree and with
natural background is definitely a much more challenging issue as illustrated in
Figure 11.

3 Task description

The task was evaluated as a supervised classification problem with tree species
used as class labels.

3.1 Training and Test data

A part of Pl@ntLeaves dataset was provided as training data whereas the remain-
ing part was used later as test data. The training subset was built by randomly
selecting 2/3 of the individual plants of each species (and not by randomly
splitting the images themselves). So that pictures of leaves belonging to the same
individual tree cannot be split across training and test data. This prevents iden-
tifying the species of a given tree thanks to its own leaves and that makes the
task more realistic. In a real world application, it is indeed much unlikely that a

Cotinus
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Fig. 4. Color variation of Cotinus coggygria Scop. (Eurasian smoketree)

Fig. 5. Global shape variation of Corylus avellana L. (European Hazel)

ally very di↵erent than pure scans. Both share the property of a limited noisy
background but scan-like photos are much more complex due to the lighting
conditions variability (flash, sunny weather, etc.) and the unflatness of leaves.
Finally, the variability of unconstraint photographs acquired on the tree and with
natural background is definitely a much more challenging issue as illustrated in
Figure 11.

3 Task description

The task was evaluated as a supervised classification problem with tree species
used as class labels.

3.1 Training and Test data

A part of Pl@ntLeaves dataset was provided as training data whereas the remain-
ing part was used later as test data. The training subset was built by randomly
selecting 2/3 of the individual plants of each species (and not by randomly
splitting the images themselves). So that pictures of leaves belonging to the same
individual tree cannot be split across training and test data. This prevents iden-
tifying the species of a given tree thanks to its own leaves and that makes the
task more realistic. In a real world application, it is indeed much unlikely that a

Noisetier
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Fig. 6. Leaf’s margin variation of Quercus ilex L. (Holm oak)

Fig. 7. Number of leaflets variation of Fraxinus angustifolia Vahl (Narrow-leafed Ash)

user tries to identify a tree that is already present in the training data. Detailed
statistics of the composition of the training and test data are provided in Table 1.

Nb of pictures Nb of individual plants Nb of contributors

Scan

Train 2349 151 17
Test 721 55 13

Scan-like

Train 717 51 2
Test 180 13 1

Photograph

Train 930 72 2
Test 539 33 3

All

Train 3996 269 17
Test 1440 99 14

Table 1. Statistics of the composition of the training and test data

Chêne

8

Fig. 8. Leaflets relative position variation of Vitex agnus-castus L. (Judas Tree)

Fig. 9. Number of lobes variation of Ficus carica L. (Common Fig)

3.2 Task objective and evaluation metric

The goal of the task was to associate the correct tree species to each test image.
Each participant was allowed to submit up to 3 runs built from di↵erent meth-
ods. As many species as possible can be associated to each test image, sorted by
decreasing confidence score. Only the most confident species was however used
in the primary evaluation metric described below. But providing an extended
ranked list of species was encouraged in order to derive complementary statistics
(e.g. recognition rate at other taxonomic levels, suggestion rate on top k species,
etc.).
The primary metric used to evaluate the submitted runs was a normalized clas-
sification rate evaluated on the 1st species returned for each test image. Each
test image is attributed with a score of 1 if the 1st returned species is correct
and 0 if it is wrong. An average normalized score is then computed on all test
images. A simple mean on all test images would indeed introduce some bias
with regard to a real world identification system. Indeed, we remind that the
Pl@ntLeaves dataset was built in a collaborative manner. So that few contribu-
tors might have provided much more pictures than many other contributors who
provided few. Since we want to evaluate the ability of a system to provide correct
answers to all users, we rather measure the mean of the average classification
rate per author. Furthermore, some authors sometimes provided many pictures

Figuier
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Fig. 8. Leaflets relative position variation of Vitex agnus-castus L. (Judas Tree)

Fig. 9. Number of lobes variation of Ficus carica L. (Common Fig)

3.2 Task objective and evaluation metric

The goal of the task was to associate the correct tree species to each test image.
Each participant was allowed to submit up to 3 runs built from di↵erent meth-
ods. As many species as possible can be associated to each test image, sorted by
decreasing confidence score. Only the most confident species was however used
in the primary evaluation metric described below. But providing an extended
ranked list of species was encouraged in order to derive complementary statistics
(e.g. recognition rate at other taxonomic levels, suggestion rate on top k species,
etc.).
The primary metric used to evaluate the submitted runs was a normalized clas-
sification rate evaluated on the 1st species returned for each test image. Each
test image is attributed with a score of 1 if the 1st returned species is correct
and 0 if it is wrong. An average normalized score is then computed on all test
images. A simple mean on all test images would indeed introduce some bias
with regard to a real world identification system. Indeed, we remind that the
Pl@ntLeaves dataset was built in a collaborative manner. So that few contribu-
tors might have provided much more pictures than many other contributors who
provided few. Since we want to evaluate the ability of a system to provide correct
answers to all users, we rather measure the mean of the average classification
rate per author. Furthermore, some authors sometimes provided many pictures

Arbre de Judée
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Fig. 6. Leaf’s margin variation of Quercus ilex L. (Holm oak)

Fig. 7. Number of leaflets variation of Fraxinus angustifolia Vahl (Narrow-leafed Ash)

user tries to identify a tree that is already present in the training data. Detailed
statistics of the composition of the training and test data are provided in Table 1.

Nb of pictures Nb of individual plants Nb of contributors

Scan

Train 2349 151 17
Test 721 55 13

Scan-like

Train 717 51 2
Test 180 13 1

Photograph

Train 930 72 2
Test 539 33 3

All

Train 3996 269 17
Test 1440 99 14

Table 1. Statistics of the composition of the training and test data

Frêne



Action recognition in images

35
Climbing



Action recognition in images

36

Reading

Phoning

Cooking

[Stanford Images test database]



3. Massive Data Processing
What’s new ?
a) Scaling-up 
b) Integration
c) Automated processing and interpretation capabilities

• Automated search, mining

• Machine learning techniques

• Semantic association

37

Data    ➙  Facts  ➙   Knowledge

[Leslie Valiant]

Living organisms function according to protein circuits. Darwin’s theory 
of evolution suggests that these circuits have evolved through variation 
guided by natural selection. The question of which circuits can so evolve 
in realistic population sizes and within realistic numbers of generations 
has remained essentially unaddressed.



CSE Engines

Modeling
Simulation
Computing

Knowledge
Innovation

Massive Data
Curating, Structuring

Mining, Learning

Instrumentation
Sensing
Imaging

38



Outline
✓Motivations
✓Ingredients

1. Modeling, simulation and computing
2. Instrumentation, sensing and imaging
3. Massive data processing
‣Impacts

• Health and Life sciences

• Earth and Environmental sciences

• Physics, chemistry, material sciences

• Engineering

• Humanities and social sciences

‣Conclusion

39



Health and Life Sciences

40
[CardioSence3D, Inria]



Health and Life Sciences

41[CardioSence3D, Inria]

Cardiac data 

Personalization 

solid mechanics 

Clinical 
applications 

Diagnosis 

Therapy planning 

blood flow electro-physiology 

perfusion  
& metabolism 

Cardiac modeling 

anatomy 



Health and Life Sciences

Computer scientists may have the best skills to fight cancer in the 
next decade. Cancer is a genetic disease, caused by DNA 
mutations (whose) diversity within cancer type makes it so hard to 
eradicate

 [D. Patterson, Berkeley]

‣Algorithms: develop efficient individual genome processing

‣Machines: Collect cancer genomes and disseminate widely

‣People: Explore the engagement of people



43
[F.Khatib, Nature, Sept 2011]

Crowd-sourcing discovery: Structure of the Mason-Pfizer protease retrovirus



Earth and Environmental Sciences

‣Study of the bio-physical and social environments
 Wide coupling between physical, biological and social phenomena

44[NASA][E.Blayo, LJK/Inria]



45
[H.B.Newman et al., CACM, 2003]

Earth and Environmental Sciences

Geological Survey of the 
Anti-Atlas,
interferometer synthetic 
aperture radar (InSAR)



Earth and Environmental Sciences
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Tornado modeling and 
visualization 

[PITAC Report, 2005]



Earth and Environmental Sciences
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[M.Pascual, Comp. Biology, 2011]

Feeding links among different trophic level species 
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[Ph. de Reffye, Inria]

Earth and Environmental Sciences

Plant growth modeling 
and simulation 



49[L.Blitz, Scientific American, Oct.2011]

Galactic Gong Show
Dark matter induced motion 

wave of the Milky Way galaxy

Astronomy



Material Science
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[J.E.Moore, IEEE Spectrum, July 2011]

Computational model prediction of 
“topological insulators”, with a follow up 

experimental confirmation



Chemistry

51[A.Sokolov, Nature, Aug. 2011]

Screening techniques for the design of organic photovoltaic material: 
from computational discovery to experimental characterization of a high 

hole mobility organic crystal



Engineering
CAD-CAM models
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Engineering
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[J.Cortes, T.Siméon, LAAS]

[Kineo]



Engineering
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[Kineo]



Engineering
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[J.Cortes, LAAS]



Engineering
Stress models and simulations
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Engineering
Material models

57
[P.L. George, Inria]



Engineering
Aerodynamics models

58

[R.Abgrall, Inria]



Engineering
Software specification, formal proof and verification

59

[Airbus]



Helicopter Aerobatics Apprenticeship Learning

60[U. Stanford]



Helicopter Aerobatics Apprenticeship Learning
Assume simple linear rigid dynamic models of helicopter
‣ Learn dynamic models, one for each type of maneuver

• Regression from teacher’s demonstrations

• Improvement by reinforcement learning in autonomous flight
‣ Learn reference trajectories, one for each acrobatic figure

• Expectation-Maximization on teacher’s demonstrations

• Temporal alignment and optimization
‣ Learn controllers, one for each acrobatic figure

• Differential dynamic programming: solves continuous MDP’s by 
iteratively approximating them as receding horizon LQR problems

61



A380 Iron Bird:
a physical prototype

A350 Digital Mockup: 
a virtual prototype

62
[Airbus]

Engineering



Engineering

Design by incremental composition of numerical models of components

‣ Reduces cost and time for designing, engineering and prototyping
‣ Allows numerical exploration of numerous alternatives, including 

designs that appear a priori impossible
‣ Permits coordinated interdisciplinary contributions and uncoordinated 

anarchic contribution of crowd creativity
‣ Enables formal proofs of properties, realistic simulations, 

characterization and optimization

63



Engineering

Design by Integration of embedded actuators, sensors, processors and 
communication components as active and intelligent organs 
‣ Creates new non functional properties: monitoring, diagnosis, recovery
‣ Brings new powerful performances and universal functionalities

64

Processors, computers, the web, (...) these new technologies have no 
specific use. Undifferentiated, universal, they transfer their utility project 
from the designer to the user. Those who design and produce them 
cannot predict to what nor to whom they will be useful. They have no 
direct finality. (...) Their functions are revealed posteriorly.

[M.Serres, Hominescence]



Social Sciences

65

‣Social networks

‣Web services over cell phones

‣Computational macro-economy models

‣Opinion space

‣Media and documents analysis



66

E-Democracy ?

[K.Goldberg, Berkeley]



Influential people

67



Peer influence in social networks

68
who received the social message were 0.39% (s.e.m., 0.17%; t-test,
P 5 0.02) more likely to vote than users who received no message at
all. Similarly, the difference in voting between those who received the
social message and those who received the informational message was
0.39% (s.e.m., 0.17%; t-test, P 5 0.02), suggesting that seeing faces of
friends significantly contributed to the overall effect of the message on
real-world voting. In fact, turnout among those who received the
informational message was identical to turnout among those in the
control group (treatment effect 0.00%, s.e.m., 0.28%; P 5 0.98), which
raises doubts about the effectiveness of information-only appeals to
vote in this context.

These results show that online political mobilization can have a
direct effect on political self-expression, information seeking and
real-world voting behaviour, and that messages including cues from
an individual’s social network are more effective than information-
only appeals. But what about indirect effects that spread from person
to person in the social network? Users in our sample had on average
149 Facebook friends, with whom they share social information,
although many of these relationships constitute ‘weak ties’. Past
research indicates that close friends have a stronger behavioural effect
on each other than do acquaintances or strangers9,11,13,21. We therefore
expected mobilization to spread more effectively online through
‘strong ties’.

To distinguish users who are likely to have close relationships, we
used the degree to which Facebook friends interacted with each other on
the site (see Supplementary Information for more detail). Higher levels
of interaction indicate that friends are more likely to be physically
proximate and suggest a higher level of commitment to the friendship,
more positive affect between the friends, and a desire for the friendship
to be socially recognized29. We counted the number of interactions
between each pair of friends and categorized them by decile, ranking
them from the lowest to highest percentage of interactions. A validation
study (see Supplementary Information) shows that friends in the highest
decile are those most likely to be close friends in real life (Fig. 2a).

We then used these categories to estimate the effect of the mobil-
ization message on a user’s friends. Random assignment means that
any relationship between the message a user receives and a friend’s
behaviour is not due to shared attributes, as these attributes are not
correlated with the treatment (see Supplementary Information). To
measure a per-friend treatment effect, we compared behaviour in the
friends connected to a user who received the social message to beha-
viour in the friends connected to a user in the control group. To
account for dependencies in the network, we simulate the null distri-
bution using a network permutation method (see the Supplementary
Information). Monte Carlo simulations suggest that this method
minimizes the risk of false positives and recovers true causal effects
without bias (see Supplementary Information).

Figure 2 shows that the observed per-friend treatment effects increase
as tie-strength increases. All of the observed treatment effects fall outside
the null distribution for expressed vote (Fig. 2b), suggesting that they are
significantly different from chance outcomes. For validated vote
(Fig. 2c), the observed treatment effect is near zero for weak ties, but
it spikes upwards and falls outside the null distribution for the top two
deciles. This suggests that strong ties are important for the spread of
real-world voting behaviour. Finally, the treatment effect for polling
place search gradually increases (Fig. 2d), with several of the effects
falling outside the 95% confidence interval of the null distribution.

To simplify the analysis and reporting of results, we arbitrarily
define ‘close friends’ as people who were in the eightieth percentile
or higher (decile 9) of frequency of interaction among all friendships in
the sample (see the Supplementary Information). ‘Friends’ are all other
Facebook friends who had less interaction. A total of 60,491,898 (98%)
users in our sample had at least 1 close friend, with the average user
having about 10 close friends (compared with an average of 139 friends
who were not close).

The results suggest that users were about 0.011% (95% confidence
interval (CI) of null distribution 20.009% to 0.010%) more likely to
engage in an act of political self-expression by clicking on the I Voted
button than they would have been had their friend seen no message.
Similarly, for each close friend who received the social message, an
individual was on average 0.099% (null 95% CI –0.042% to 0.048%)
more likely to express voting.

We also found an effect in the validated vote sample. For each close
friend who received the social message, a user was 0.224% (null 95% CI
–0.181% to 0.174%) more likely to vote than they would have been had
their close friend received no message. Similarly, for information-
seeking behaviour we found that for each close friend who received
the social message, a user was 0.012% (null 95% CI –0.012% to 0.012%)
more likely to click the link to find their polling place than they would
have been had their close friends received no message. In both cases
there was no evidence that other friends had an effect (see
Supplementary Information). Thus, ordinary Facebook friends may
affect online expressive behaviour, but they do not seem to affect
private or real-world political behaviours. In contrast, close friends
seem to have influenced all three.

The magnitude of these contagion effects are small per friend, but it
is important to remember that they result from a single message, and in
many cases it was not possible to change the target’s behaviour. For
example, users may have already voted by absentee ballot before
Election Day, or they may have logged in to Facebook too late to vote
or to influence other users’ voting behaviour. In other words, all effects
measured here are intent-to-treat effects rather than treatment-on-
treated effects, which would be greater if we had better information
about who was eligible to receive the treatment.
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Study involving 61 Million people on Nov. 2010 US congressional elections



Peer influence vs susceptibility in social networks

69

‣Randomized study involving 1.3 Million Facebook users of 
influence-mediating messages about movies and books

‣Influence and susceptibility modeled from 
spontaneous adoption vs influence-driven adoption as a 
function of number of peer influence-mediating messages

‣Impact on social contagion studies in health behavior (obesity, 
smoking, exercise) and community behavior (cooperation, 
fraud)

[S.Aral, Science, July 2012]



Joint distribution of  influence and susceptibility 

70[S.Aral, Science, July 2012]
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EU Flagship Project

72

[Parietal, Inria]



A scalable simulator for an architecture for Cognitive 
Computing

73
[D.Modha, SyNAPSE]



A scalable simulator for an architecture for Cognitive 
Computing

74
[D.Modha, SyNAPSE]
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Modeling
Simulation
Computing

Knowledge
Innovation

Massive Data
Curating, Structuring

Mining, Learning

Instrumentation
Sensing
Imaging
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Time

Complexity
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Conclusion
‣CSE

• Radical change in every area of Science and Engineering

• Wide access to data and knowledge

• Critical in addressing human and social development

‣Informatics in CSE

• Should be able to play a central role if

• Heavily involved in interdisciplinary research
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